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It is shown that the calculation of the total cross section for Coulomb excita
tion can be reduced to the calculation of radial matrix elements between eigenstates 
in the Coulomb potential. With the method developed in the preceding paper, one 
is able to give closed expressions, convenient series expansions, and recursion 
formulae for these matrix elements. The case of vanishing energy loss and the 
semi-classical limit are also discussed.

I. Introduction.

r I "’he exact evaluation of the Coulomb excitation cross section 
1 has hitherto only been performed in the dipole case1’2. The 

radial matrix elements for the higher multipoles arc more com
plicated and have previously been treated only in the WBK 
approxmation3. With the method developed in the preceding 
paper4, one is able, however, to give closed expressions and 
suitable series developments of these matrix elements.

The closed expression given there contains a generalized 
hypergeometric function of two variables. It is one of the main 
points of this paper to give the analytical continuation of this 
function into the domain where it is of physical interest and from 
which the numerical evaluation can be performed. Once this is 
derived it will be easy to discuss the different limiting cases. We 
shall deal here especially with the limit of no energy loss and 
the classical limit. Furthermore, we shall give a number of 
recursion formulae which will considerably facilitate a numerical 
evaluation.

II. Reduction of the Coulomb Cross Section 
to Radial Matrix Elements.

The electromagnetic excitation of nuclear levels by means of 
impinging charged particles is a phenomenon analogous to the 
nuclear photoeffect, since specific nuclear properties enter only 
through matrix elements identical with those encountered in radia-

1*  
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lion theory. If one neglects the penetration of the projectile into 
the nucleus, one finds easily in the non-relativistic limit the 
following differential cross section for excitations by means of 
the electric field:

der 
di2 (1)

/Hi, Zx, and p are the mass, the charge, and the velocity of 
the projectile, respectively. The indices i and f refer to the initial 
and final states. B(EÅ) is the square of the nuclear 2Z pole electric 
transition matrix element in the notation of Bohr and Mottel- 
son5. The states | k > are eigenstates in the Coulomb field of the 
nucleus which, at distances far from the nucleus, behave as “plane 
waves” (distorted by the Coulomb field) with definite wave 
numbers k. These states may be decomposed in partial waves6: 
|T> =¿47r(- (2)

z = o

where aL — arg 7^(7+1 + irç) is the Coulomb phase and Ft(kr) 
the regular solution of the wave equation behaving as

sin In 2 kr + ol for kr » 1.

Introducing this into (1) one may integrate over the angles, 
utilizing the formula*

1 
kr — -In —

2

I /(2 11 + 1 ) (2 /2 4 0(2 + 1 ) 
I7 4%

//1 It h\ 
\ 0 0 0 /

/ 11 I2 I3 \
’ m1 m2 n?3 '

(3)

By integrating over the direction of k one obtains the total cross 
section

64 n1 2 Zf e2 vf ''Ç B (EX)
°el = fi4 (2 2+ l)2

z (4)
xX(2/¡ + i)(2// + i)('450Ájj.w,y-‘|*

< 7'
* Here we use the Wigner notation for the vector addition coefficients. The 

relation between those and the Clebsch-Gordon coefficients of Condon and Shortley 
(E. U. Condon and G. H. Shortley, Theory of Atomic Spectra, Oxford 1936) is

Hi h z3 'l _ V------ — < I mi l2 m2 I (h /2) l3 — m3 >.
y/2/3+l
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1 c= nAWi')'-1'1 Ft<~kir>dr- o) 
Aj Kf .'0

The selection rules for the angular momenta /,■ and l¡ are directly 
seen from equation (3) :

I ¡i — I/ I < Â < /,• + If and li 1/ Å even.

The evaluation of the total cross section is thus reduced to 
the evaluation of the radial integrals The differential cross
section and the angular distribution of subsequent y quanta can 
also be expressed by these radial matrix elements. In a forthcoming 
review article7, formulae will be given for these cross sections 
together with a more complete discussion of electromagnetic 
excitations.

III. Evaluation of the Radial Matrix Elements.

According to the formula (22) of I, the radial matrix element 
is given by

y-)—i = I + 1 + iZ?t) I i + 1 +>??/) I
' l,'r (2Z,+ i)!(2/z+i)!

( I. + /;-A+ 1 ) ! i'<+ + 2.t'< y'r e“ + O (A, - A,/“2 

-^2 (/í T" // — d- 2, /¡ + 1 i , If ] -T i'iff, 2 /, + 2, 2 If -T 2, x, — y),

where
X =

ê
and y =

2 Vi, 
t ’

forth er
£ = Vf — Vi and V =

Zj Z2 é
hv

Since the series expansion of the F2 function only converges for 
x and y in the neighbourhood of zero, one has for the numerical 
evaluation to lind the analytic continuation of this function in 
the neighbourhood of infinity.

'fhe analytic continuation is in fact given by the Barnes 
integral representation8, and suitable asymptotic expansions may 
easily be derived from this. However, we shall here use only the

(6)
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analytic continuation for the special case ± A and derive
the other matrix elements by means of recursion formulae.

In these matrix elements, where the change of / is maximum 
(maximal matrix elements), the F2 function reduces to an Fx 
according to formula A5. This may again be expressed by an 
F3 function (A5) for which an analytic continuation in terms of 
F2 functions is known (A4). One thus obtains immediately, e.g.,

_ 2 I_ 2

f2

F2(2 / + 2, / + Â + 1 — irji, l+l -T ii]j, 2 I + 2 Å + 2, 2 I + 2, x, — y) = 

F(z+^) I2

xF2i—H-1 +1 +1 H- z H- 1 — i'¡fa, l+l + iifa, Å +1 +1 + —A -J-1 + i + —, — R

(_1)z+l-i^(2Z + 2Â+ 1)! (—.r)

I \z+^F(/ + ;+i-^)/’(zÂ-jo

2*7// F(/+l—zyz)

XF2(— Â+ 1 + ¡+ / + Â+1 —z??,-, l+l+irjf, 2+1+z^,

* Dr. L. C. Biedenharn has kindly communicated to us an independent 
derivation of expressions equivalent to formulae (8) and (9) which were obtained 
directly without explicit use of the properties of the hypergeometric functions.

(7)

With this formula one gets for the radial matrix element*

F(/+1 + Z7?z) W k z_2 x j\r(Å+iO\2 
F(l 1 + ñ;¿) \rifi 1 ( (2Â—1)1

2 Fe
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Similarly, for the other maximal matrix element, one obtains

j| 7’0+ÍÍ) I2 
I (2Â-1)!

2 r — 2 2 -J- 1, I -(- 1 1 / 4~ 1 — lVi’ — 4~ 1 — 1 ê > ■—

+ 2 Ke 4 f V + ,í r<' + Â+1 +-’)/)r<-A~«)
_\2 T]J 1\IÅ + ir]i)

+ l + z£,—
2 Tji ‘2r]i

X F21 — 4~ 1 + i £, Z + 2 4-1 4~ z »//, I + 1 ■ úft, 2 4-1 4 if,

-2 + 1 +z7> —
2»?i 

= e~^ ^r+^i (Vi “ ty) •

(9)

In the first F2 function of these formulae, the first parameter, 
— 2 2 + 1, is a negative integer. Thus the functions are reduced 
to polynomials which for the lowest multipole orders are given 
explicitly by

F2 i— 2 2 + 1,1 + 1 — z rji, Z + 1 + z 7]/, — 2 + 1 — i£, — A —J— 1 —|— z £,---- , - —
\ Vf

1 . 
2 (1 + £2) Vf

1
2(i+ê2)"(4+ê2)

4 ///) + £ + 4(3^—2^-)]
Vf

for 2 = 1

for 2=2

for 2=3

(10)

The formulae (8) and (9) are well suited for a numerical evalua
tion, since the series expansion of F2 converges for nearly all 
interesting values of the parameters. However, for / » tj the con
vergence is rather slow.

IV. Recursion Formulae.

elements can be derived from
the maximal ones through recursion formulae. We shall first 
derive a recursion relation of this type, which we shall use for 
quadrupole matrix elements.
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Recursion relations connecting different multipoles can be 
used, e. g., for the calculation of the octupole matrix elements 
from the quadrupole ones.

For the numerical evaluation of the maximal matrix elements, 
it may also be advantageous to use recursion formulae connecting 
successive maximal matrix elements.

From the general formula I (17) one gets a recursion formula 
of the first type by demanding the condition

æl (^ ---- “T -T2 If + #3 + 1) + æ4 (^i H- d- 1) — (11)

besides the two conditions I (18,19). In the quadrupole case, 
this leads to two recursion formulae, where one has to set l¡ = 
1/— 1 and Z; = // + 1, respectively.

Pi i+!-r i/.2.1//+ p.j 3Í// + 2 + ya 3i/+i — 0, (12)

+ y "a Mi +3i i + i + 1/4 3/z ; 3 — 0, (13)

where

y, = Á-,(/ + 2)(2Z+3)[í+l+í»/l¡ 

i/a - -- /.//(21 )|/ + 1 + ir//\

!7, = 3á7(/ + 1)(2í + 1)|/ + 2 + í>íz| 

!/,= -3Å-,(/+l)(2/ + 3)|/+i>),|

y', = —3/.'i(/+l)(2í+l)|/ + 2 + í>;i 

1/2 — 3Ay(/+ 1 1(2/4- 3)|/ + irjf\

-À-,(/ + 2)(2/ + 3)|/+l+ir//| 

»; = í-,/(2/+i)|/+i+í»),|.

By elimination of the matrix element 3/z+31;Z + 1 from (12) and
(13) one obtains a recursion formula of the desired type

¿3///3 = Zi 3/z , + 2 + z2 3//_3! / +1 + z33/i+32Z + ^4 3/z+’\ 1—1 (15)

(14)

(15)



Nr. 19 9

By means of (15) the non-maximal quadrupole matrix elements 
are determined from the maximal ones already calculated in 
(8) and (9).

The recursion relation connecting matrix elements of different 
multipoles may also be derived from I (17). One relation involving 
octupole matrix elements is, e. g., obtained with the subsidiary 
condition xx = 0. This leads to

y i + i — U i i3 + 172 Ml i + 2 + IF i z +1 > 

where „
l/i = 2 I 7 + 1 + z J

y = (7 + 2) (2 7 + 3) y2 — fy (2 I + 1) I 7 4*  2 + ivy |

1/3 = — À-,(2 7 + 3) I 7 + z^-|.

(17)

(18)

In order to obtain recursion relations which involve only maximal 
matrix elements, we shall use the general properties of the 
functions which occur in these matrix elements. The property 
which we shall utilize is the following:

Fx (« + ^1 , ß + ^2 , ß + , 7 + 7Î4 » 1/)

A (.r, y) + B (.r, y) + C (x, y) j
Fx («, ß, ß', y, x, y),

(19)

where nr are arbitrary positive or negative integers and A, B, and 
C rational functions in x and y9.

A method of deriving recursion formulae is then to eliminate 
~Fr and -^—Fx between three such equations. The Fx function 
dx d y
which occurs in the maximal matrix elements is, for 7( = 7^ + 2, 

( I + 2 + 1 — iry, I + 1 + z î;/, 7 4- 1 — z'i/y, 2 7 + 2 2 + 2, x, y) = Ft (I)

With ,T = F‘- ,/ = A.
’//+’/>

One easily obtains

/.-(/+!) = (2' + 2A + 2)(2/ + 2A+3) 1
11 4- 2 + 1 + ir/i |211 + 1 + ir/f |2 (.r—y)

j (7 + 1 — ivy) (,r — 1)^ —(7 + 1 + ivy) (y — 1) A j. Fx (7) .

(20)

(21)
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Similar expressions for ^(Z—1) and Fi(l + 2) can be derived. The 
elimination of the derivatives gives the desired recursion formula

ZZ?! V Z —3 + W2 ^b+\—2,l — 2 + W3^l+\—l,l — l + + = 0
with

ii’i = 2 ThTjf I I — 2 + iTjf II I — 1 + Z77Z II / + Â — 2 + z?2i I
zp2 = —\l—l + |[i2(2 + 4 V/) + Z [4 (A — 2) (»7*  + V/) + »7i — »7/1

+ G — 2) [(2 A — 3) rç2 —- 3 rf] + 6 rft rf]

u’s = -(-\l + ¿—1 + i»7i I [Z2(4 7?2 + 2 772) + /[4 (A — 2)?7i + *7?  — ?7/]
Vi

— 2 (A — 2) Vi + 6 Í7í î?/]
w4 = — 2 ?72 I / + A — 1 + irji ¡I I + A + ir^ || I + zT;z |.

V. Limiting Cases.

We shall here study two limiting cases of the general formulae 
for the Coulomb matrix elements. The one is the case of vanishing 
energy loss, i. e. —rji ~ = 0, where one easily can obtain
a simple expression for an arbitrary Sommerfeld number. The 
second case is the classical limit where » 1, while r¡f — 
is finite. This must lead to expressions identical with the usual 
classical integrals10’ n.

a) £ - 0.
For the maximal matrix elements, the second term of equa

tions (8) and (9) is zero*  while the first F2 function is equal 
to one. One gets thus immediately the result

= (2 A’/“2 i(Azl)!P
(2A-1!)

r(l + 1 r zb/)
F(7+T+iT7V) • (24)

The other matrix elements can be obtained by means of the 
recursion formulae. For the quadrupole case one may use 
equation (15)**.  However, this becomes singular for ^—0, and 
the limiting process £ 0 has to be performed with some care.

* This is not true for 2 = 1, the result (24) is, however, right also in this case. 
** The formula (25) has been found also by L. C. Biedenharn and C. M. Class12 

who have given a numerical evaluation of the total cross section and one of the 
coefficients for the angular distribution of the subsequent y’s for the case £ = 0.

(22)

(23)
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' lim —
2(2 Z+ 1)Z(Z+l)^oê

r(Z + 1 + i/jf)
F(Z + 1 + ihi)

F(Z + 1 + irjt) 
r(l+l + irjf) ¿ W

-------------(2 Z + 1 —71Î7 + Z« [v(Z + 1 — Ji?) —y 0 + 1 + z" *?)]}•  
2Z(Z+1)(2Z+1)

We have here used the expansion T (x + ó) = I\x) [1 + ôy>(x)], 
where y(x) is the logarithmic derivative of the /’’-function.

For the octupole case one may use equation (17), and one 
gets directly

+ 1 3Z(Z+1)(Z+2)(2Z+1)(2Z+3)|Z + 1 + zi7|^3I/+1 + ZÎ?I

[2 Z + 1 — jr?/ + z/y (y) (Z + 1 — irf) — (Z + 1 + z^))] — Z (/ + 1) (2 Z + 1)}.

The limiting case 77 = 0, i.e., the case where a plane wave Born 
approximation applies, is immediately obtained from (24) and (25).

For rj » 1 one obtains the classical limit for £ = 0. The 
deflection angle 6 is there determined through tg 0/2 = rj/l (see 
below) and one gets, e. g., for the quadrupole case

These matrix elements are just i/r]2 times the classical integrals 
for £ = 0 given by Ter-Martirosyan (loc. cit.). The connection 
between the matrix elements and the classical integrals is ob
tained by the WBK approximation.

b) The. classical limit.

In the classical limit v¡ » 1, the main contribution to the 
matrix element < Æf|r” A > °f equation (1) will arise from
a narrow region of Z values around13

(25)

(26)
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mu cotgO/2, (28)

where p is the classical impact parameter and 0 the angle between 
À’, and k¡.

For p » 1 and £ finite, the F2 functions of (8) and (9) ap
proach the confluent hypergeometric functions of two variables 
lP2 according to equation (A3). One obtains thus, in view of 
equation (28),

with 2 = I (cot 0/2 0
e—Í0/2 _£

2 sin 0/2 ’

The classical integrals (0) are defined in ref. II). Similarly, 
one obtains

■vniT = V

4 0 •
= Á'"Zí‘F-sinÁ 0/‘> e¿(cot0/2 + 0/2-n/2)

4¿

X I I 7ià±_zï)|2ç/2( -2 2+ 1,-/1 + 1 z£, —Â + 1 + z£, — z*,  — z) 
I (22 — 1)!

+ 2 Re [T(- Â - z£) (z*) Â + ^(-1 /

P2(- Â+ 1 + z£,Â + 1 +z£,-2+ 1 + i£,-z*  - z)B

= 2
4 V

fhe non-maximal matrix elements may be obtained by means 
of the recursion formulae.
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The series expansion (A3) of the function converges for all 
values of the variables, and the formulae (29) and (30) are thus 
directly suited for a numerical evaluation.

Since the limiting formula (A3) also holds for any value of 
in the limit I » 1, the formulae (29) and (30) constitute the limits 
of the general formula (6) for large values of /,• and l>.

VI. Conclusions.
By means of the results obtained in this paper it is possible to 

calculate the exact matrix elements needed for the computation of 
the total and differential cross sections in Coulomb excitation. The 
main difficulty encountered in a numerical evaluation is the rather 
large number of angular momenta which contribute to the pro
cess. The main contribution will in fact arise from / values of 
the order / — ?;, but also much higher / values must be taken 
into account. A direct application of the formulae for the matrix 
elements is made difficult by the fact that the F2 functions con
verge rather slowly for Z > 77. However, this difficulty is over
come by the use of recursion formulae, whereby one may com
pute all matrix elements from the maximal matrix element, 
corresponding to I = 0,1, and 2. Furthermore, in the limit/» 1, 
the matrix elements approach always the classical integrals

2/4//’7^ (0, £), with tg 0/2 = tj/1. Extensive tables of these 
integrals have recently been compiled*.

VII. Numerical Results.**
A numerical evaluation along the above mentioned lines has 

been carried out on the high speed electronic computer BESK 
in Stockholm. The first three maximal matrix elements were 
calculated with an accuracy of 10-11. A comparison between 
the directly evaluated matrix elements and those obtained by the 
recursion formulae proved that this accuracy was sufficient for 
the application of successive recursion from these three first matrix 
elements.

* This tabulation, which was made by the authors, is not published, but 
parts of it are available on request.

** This chapter has been added to the original manuscript on May 10th 1955. 
We are greatly indebted to Prof. G. Breit for drawing our attention to an 
error of sign in the numerical calculation of ref. 11.
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Fig. 1. The ratio of the exact to the classical total cross section function /i2 (^¡,£) 
lfK2 (oo, £) for electric quadrupole excitation as a function of r/;. The curves for differ

ent values of £< 2 coincide within the accuracy of drawing for ??)1.



Nr. 19 15

An extract of the results is shown in Figs. 1—3.
The total cross section function fE2 (j]> 0 is connected with the 

total cross section for electric quadrupole excitation through

2 2

«■¿’2 —- B(E2)fE2(7]i,^).

With this definition one expects from the WBK approximation 
that the quantum mechanical corrections on f are small. Thus

64
ÍE2 (Vi> 0 = “AT- Vi Vi b0

♦)

 (3Z (/— 1) Z 3 v 1(1+1) (2 1+1) / 3
l2(2Z-l) V z~2’1) + (2 1-1) (2 1+3) 11

3 (Z + 1) (Z + 2) 7_3 \2 I
2 (2Z+ 3) V i+2,i) f



16 Nr. 19

The classical limit of this function is

<£2 (°°> £) = J
71 8 371
sin 0 (10

o 125
f)|2sin“4e/2.

This function was tabulated earlier (ref. 11) and is reproduced 
in Table 1. The results for the total cross section function is plotted 
in Fig. 1 as the ratio fE2 (//, O///Í2 0- Within the accuracy of
drawing the curves for different values of £ < 2 coincide for t] > 1.

The angular distribution coefficients are given by

with
fl2 = hilb0 and = bJb»

3 (Z+l) (Z + 2) (Z + 3) 
(2 Z+ 3)2

- 6
(/_,)/(;+1) 3 3

. \ 2 i i i

- 6
Z(Z+J)^(Z + 2) 3

(2 + 3)2 l +
COS ((JI — (7/4 2

i_9 Z(Z-l)(Z-2)(/-3) 3 ^9(Z-1)Z(Z+1)(/+2)(2Z+1)
i ¡16 (2Z—1)2(2 Z+ 1) ' /"2’/ 4 (2/ l)2(2/+3)2

9 (Z ± 11_<Z + 2> <Z + 3> <Z + 4>
16 (2 Z + 1) (2 / + 3)2

15
4

(£-2)(Z-1)Z(Z+_1)v_3
(2 /- l)2 (2 / + 3) " /-- J cos (a. - °i

15
4

££Z^1)(Z +2¿(/ + 3) -3
(2Z-l)(2Z+3)2 ' z + : d/z z COS (<7/ — cr/ + 2)

105
8

(¿-1)Z(Z+_1)(Z4:2) |7_3
(2Z-l)(2Z+l)(2Z+3) ' l + ‘2’1 Mi-2, i cos<ct/ + 2 — °i
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The results for n2 and a4 are plotted in Figs. 2 and 3. The classical 
curves (r/ = 3c) calculated earlier11 contain an error of sign.
The curves for =

«2 <Jli =

are discontinuous

«4 (Vi =

having the values

for £ = 0

for £ ± 0

for £ = 0

for £ ± 0

Table 1.

s /k2 (øo,£). 10+P P
0.0 0.8954 0
0.1 0.8638 0
0.2 0.7289 0
0.3 0.5608 0
0.4 0.4046 0
0.5 0.2781 0
0.6 0.1844 0
0.7 0.1189 0
0.8 0.7511 1
0.9 0.4663 1
1.0 0.2855 1
1.2 0.1035 1
1.4 0.3628 2
1.6 0.1238 2
1.8 0.4143 3
2.0 0.1363 3

The classical total cross section function for electric quadrupole excitation 
for £ < 2.
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Appendix:
Some Properties of Generalized Hypergeometric Functions 

of Two Variables.

Besides the function F2 defined in I, we shall here use the 
following Appell functions:

Fi(a, ß, ß' y,

Fa (a, a, ß, ß', y, x

where
T (fl + 71)

a (a + 1). . . . (a + n — 1).

(Al)

These double series have the following domain of absolute con
vergence :

I y I < !• (A2)

From these hypergeometric functions one can obtain related 
functions by a limiting process, (the so-called confluence), e. g.,

lim F2 a, ,y, y , «i x, e2 y = W2 («, y, y , x, y), 
Fi —0 \ 2 !
Fa —0

(A3)

where
co

m, n = 0

“m + n

7m n-

is a series expansion which converges for all values of x and y. 
There exist a large number of functional relations connecting 
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different hypergeometric functions. Some of these represent an 
analytic continuation, such as

F3(a,a,' ß,ß',y,x,y} = f(a,a',ß,ß')(—x') a (—p)

x y)

+ /■(«, ß'.ß,«’) (-.T)-“(- yyl1'

F2 í a + ß' + 1 — y, a, ß', cc + 1 — ß, ß' + 1 — cc' 1 1
’ æ’ y.

+ f(ß,ce’,a,ß') (~xrß(~ yya'

7*2  iß + «*  + 1 — y, ß, ct', ß + 1 — a, a' + 1 -ß'
i, i) 
æ y/

+ f(ß,ß',a,a') (—x)~ß (—y)~ß

F2[ß + ß' + 1 -y, ß,ß', ß + l-a,ß' + 1 — a
i i

where

f (Á 9 LI, O , (J ) — --------------------- - •
71(e)7Xa)r(y-2-/z)

(A4)

Others represent the reductions which occur for special choices 
of the parameters. We shall here use the following reduction 
formulae :

F2 (a, ß, ß', y, a, x, y) = (ß — y) P\ |/3, a — ß', ß', y, x

F2 («, ß, ß', a ,y',x, y) = (1 — x) ß F1\ßr, ß, a — ß, y', -- - , y |
\ 1 — x /

(A 5)

CERN (European Organization for Nuclear Research) 
Theoretical Study Division, Copenhagen

and
Institute for Theoretical Physics, University of Copenhagen.

■>»



References.
1. R. Huby and H. C. Newns: Proc. Phys. Soc. 64 A, 619 (1951).
2. C. T. Mullin and E. Guth : Phys. Rev. 82, 141 (1951).
3. K. Alder and A. Winther: Phys. Rev. 96, 237 (1954).
4. K. Alder and A. Winther: Dan. Mat. Fys. Medd. 28, no. 18 (1955).

Quoted as I.
5. A. Bohr and B. Mottelson : Dan. Mat. Fys. Medd. 27, no. 16 (1953).
6. N. F. Mott and H. Massey: Theory of Atomic Collisions, Oxford

1949.
7. K. Alder, A. Bohr, T. Huus, B. Mottelson and A. Winther:

Rev. Mod. Phys, in preparation.
8. Erdélyi et al: Higher Transcendental Functions, Me Graw-Hill

1953.
9. P. Appell et J. Rampé de Fériet: Fonctions Hypergéometriques

etc. Paris, Gauthier-Villars 1926.
10. K. A. Ter-Martirosyan : Journ. Exp. Theor. Phys. C. S. S. R. 22,

284 (1952).
11. K. Alder and A. Winther: Phys. Rev. 91, 1578 (1953).
12. L. C. Biedenharn and C. M. Class: Phys. Rev. in press.
13. N. Bohr: Dan. Mat. Fys. Medd. 18, no. 8 (1948).

Indleveret til selskabet den 18. marts 1955.
Færdig fra trykkeriet den 7. oktober 1955. 


